Part Number Hot Search : 
MTE1040 YBAMU C1208 MDHU104 1N523 ESD05 54HC04 K2142
Product Description
Full Text Search
 

To Download IRFZ44N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IRFZ44N
N-CHANNEL Power MOSFET
APPLICATION
Buck Converter High Side Switch DC motor control , Ups ...etc , & other Application VDSS 55V RDS(ON) Max. 17.5m ID 50A
FEATURES
Ultra Low ON Resistance Low Gate Charge Dynamic dv/dt Rating Inductive Switching Curves Peak Current vs Pulse Width Curve
PIN CONFIGURATION
TO-220
SYMBOL
D
Front View
GATE
SOURCE
DRAIN
G
S
1 2 3
N-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS
Rating Drain to Source Voltage Drain to Current Continuous Tc = 25 , VGS@10V Continuous Tc = 100 , VGS@10V Pulsed Tc = 25 , VGS@10V (Note 1) Gate-to-Source Voltage Total Power Dissipation Derating Factor above 25 Peak Diode Recovery dv/dt (Note 3) Operating Junction and Storage Temperature Range Repetitive Avalanche Energy (Note 1) Maximum Lead Temperature for Soldering Purposes Maximum Package Body for 10 seconds Avalanche Current (Note 1) dv/dt TJ, TSTG EAR TL TPKG IAR Continue Symbol VDSS ID ID IDM VGS PD Value 55 50 35 160 20 .94 0.63 5.0 -55 to 175 9.4 300 260 25 A mJ V W W/ V/ns Unit V A
THERMAL RESISTANCE
Symbol R R
JC
Parameter Junction-to-case Junction-to-ambient
Min
Typ
Max 1.5 62
Units /W /W
JA
Test Conditions Water cooled heatsink, PD adjusted for a peak junction temperature of +175 1 cubic foot chamber, free air
Page 1
IRFZ44N
N-CHANNEL Power MOSFET
ORDERING INFORMATION
Part Number Package ....................IRFZ44N................................................TO-220
ELECTRICAL CHARACTERISTICS
Unless otherwise specified, TJ = 25 .
cIRFZ44N Characteristic OFF Characteristics Drain-to-Source Breakdown Voltage (VGS = 0 V, ID = 250 A) Breakdown Voltage Temperature Coefficient (Reference to 25 VDSS/ TJ IDSS ) ) IGSS IGSS ON Characteristics Gate Threshold Voltage (VDS = VGS, ID = 250 A) Static Drain-to-Source On-Resistance (VGS = 10 V, ID = 25A) Forward Transconductance (VDS = 25 V, ID = 25A) Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) Diode Forward On-Voltage Reverse Recovery Time Reverse Recovery Charge Integral pn-diode in MOSFET (Note 1) (IS = 25A, VGS = 0 V) (Note 4) (IF = 25A, VGS = 0 V, di/dt = 100A/s) (Note 4) ISM VSD trr Qrr ...............160 ...............1.3 63...............95. 170..............260 A V ns nC (Note 4) Dynamic Characteristics (VDS = 25 V, VGS = 0 V, f = 1.0 MHz) (VDS = 44 V, ID = 25 A, VGS = 10 V) (Note 2) Ciss Coss Crss Qg Qgs Qgd Resistive Switching Characteristics (VDD = 28 V, ID = 25 A, VGS = 10 V, RG = 12 ) (Note 4) td(on) trise td(off) tfall IS .12 60 .................44 .................45 ...............50 .. ns ns ns ns A 1470 360 88 .63 14 23 pF pF pF .nC nC nC gFS 19 (Note 4) RDS(on) 17.5 S m VGS(th) 2.0 ...4.0 V 25 250 100 -100 nA nA 0.058 .V/ A VDSS 55 ... V Symbol Min Typ Max Units
, ID = 1mA)
Drain-to-Source Leakage Current (VDS = 55 V, VGS = 0 V, TJ = 25 (VDS = 44 V, VGS = 0 V, TJ = 150 Gate-to-Source Forward Leakage (VGS = 20 V) Gate-to-Source Reverse Leakage (VGS = -20 V)
Source-Drain Diode Characteristics
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 1)
S ISD 25A, di/dt 230A/s, VDD V(BR)DSS,
TJ 175C
R Essentially independent of operating temerpature T Pulse width 400s; duty cycle 2%. U V
Page 2
IRFZ44N
N-CHANNEL Power MOSFET
Duty Cycle
Figure 1. Maximum Effective Thermal Impedance, Junction-to-Case
1.000
50%
Z JC, Thermal Impedance
20% 10%
0.100
5%
2% 1%
PDM
t1 t2
NOTES: DUTY FACTOR: D=t1/t2 PEAK TJ=PDM x Z JC x R JC+TC
0.010
single pulse
0.001
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
tp, Rectangular Pulse Duration (s)
Figure 2. Maximum Power Dissipation vs Case Temperature
Figure 3. Maximum Continuous Drain Current vs Case Temperature
70
PD, Power Dissipation (W)
140
ID, Drain Current (A)
120
60 50 40
100 80 60
40 20
30 20 10 0
175
0 25 50 75 100 125 150
175
25
50
75
100
125
150
TC, Case Temperature (oC)
TC, Case Temperature (oC)
Figure 4. Typical Output Characteristics
220 200 180
PULSE DURATION = 250 S DUTY CYCLE = 0.5% MAX TC = 25 oC
Figure 5. Typical Drain-to-Source ON Resistance vs Gate Voltage and Drain Current
50 45
VGS = 15V
ID, Drain Current (A)
160 140 120
VGS = 10V
VGS = 8V
RDS(ON), Drain-to-Source
40
ON Resistance (m
ID = 14A ID = 28A ID = 55 A
35
VGS = 6V
VGS = 5V
100
80 60
30
25
PULSE DURATION = 250 S DUTY CYCLE = 0.5% MAX o TC = 25 C
VGS = 4.5V VGS = 4V VGS = 3.5V
VGS = 3V
40 20 0 0 5
20
15 10
3 4 5
6
7
8
9
10
VDS, Drain-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
Page 3
IRFZ44N
N-CHANNEL Power MOSFET
Figure 6. Maximum Peak Current Capability
10000
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25 oC DERATE PEAK CURRENT AS FOLLOWS: I = I 25 150 - T C ---------------------125
IDM, Peak Current (A)
1000
100
10 VGS = 10V 1 1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1E+0 10E+0
tp, Pulse Width (s)
Figure 7. Typical Transfer Characteristics
Figure 8. Unclamped Inductive Switching Capability
1000
ID, Drain-to-Source Current (A)
40 35 30 25 20 15 10 5 0
IAS, Avalanche Current (A)
PULSE DURATION = 250 s DUTY CYCLE = 0.5% MAX VDS = 10 V
If R 0: tAV= (L/R) ln[(IASxR)/(1.3BVDSS-VDD)+1] If R= 0: tAV= (LxIAS)/(1.3BVDSS-VDD) R equals total Series resistance of Drain circuit
100
STARTING TJ = 25 oC
+175 oC +25oC -55oC
10
STARTING TJ = 150 oC
1 1E-6 10E-6 100E-6 1E-3 10E-3 100E-3
1.5
2.0
2.5
3.0
3.5
4.0
VGS, Gate-to-Source Voltage (V)
tAV, Time in Avalanche (s)
Figure 9. Typical Drain-to-Source ON Resistance vs Drain Current
Figure 10. Typical Drain-to-Source ON Resistance vs Junction Temperature
2.5
RDS(ON), Drain-to-Source ON Resistance (m )
50
RDS(ON), Drain-to-Source Resistance (Normalized)
PULSE DURATION = 10 s DUTY CYCLE = 0.5% MAX TC=25C
40
2.0
30
1.5
20
VGS=10V
1.0.
PULSE DURATION = 250 s DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 15A
10 0 50 100 150 200 250
0.5 -75 -50 -25 0 25 50 75 100 125 150 175
ID, Drain Current (A)
TJ, Junction Temperature (oC)
Page 4
IRFZ44N
N-CHANNEL Power MOSFET
Figure 11. Typical Breakdown Voltage vs Junction Temperature
BVDSS, Drain-to-Source Breakdown Voltage (Normalized)
1.20
Figure 12. Typical Threshold Voltage vs Junction Temperature
1.2
VGS(TH), Threshold Voltage (Normalized)
1.15
1.1 1.0 0.9 0.8 0.7 0.6
0.5
1.10 1.05 1.00 0.95 0.90 -75 -50 -25 0.0 25 50 75 VGS = 0V ID = 250 A 100 125 150 175
VGS = VDS ID = 250 A
-75 -50
-25
0.0
25
50
75 100 125 150 175
TJ, Junction Temperature (oC)
TJ, Junction Temperature (oC)
Figure 13. Maximum Forward Bias Safe Operating Area
1000
OPERATION IN THIS AREA MAY BE LIMITED BY RDS(ON)
Figure 14. Typical Capacitance vs Drain-to-Source Voltage
3000
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd Coss Cds + Cgd Crss = Cgd
ID, Drain Current (A)
10s
C, Capacitance (pF)
2500
Ciss
100
100
2000
1500 1000 500
Coss
10
TJ = MAX RATED, TC = 25 oC Single Pulse
1.0m
10ms
1
DC
Crss
0 10 100 0.01 0.1 1 10 100
1
VDS, Drain-to-Source Voltage (V)
VDS, Drain Voltage (V)
Figure 15. Typical Gate Charge vs Gate-to-Source Voltage
VGS, Gate-to-Source Voltage (V) ISD, Reverse Drain Current (A)
12 10
VDS=45V
Figure 16. Typical Body Diode Transfer Characteristics
180 160 140 120
150 oC
8 6 4 2 0 0
5
VDS=30V VDS=15V
100
80 60
25 oC
-55 oC
40
20 0
VGS = 0V
ID = 59A
10
15
20
25
30
35
40
0.3
0.5
0.7
0.9
1.1
1.3
QG , Total Gate Charge (nC)
VSD, Source-to-Drain Voltage (V)
Page 5


▲Up To Search▲   

 
Price & Availability of IRFZ44N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X